Report: The Future of Healthcare

Sector: Healthcare

Publication Date: 2020

Vidmantas Sakalys, CEO of Femtika

From bio-pacemakers to micro-robots manoeuvring the bloodstream – Lithuanian company Femtika is producing 3D micro- and nano-structures by applying very advanced fabrication techniques. Vidmantas Sakalys, Femtika’s CEO, outlines the company’s plans and shares his view on emerging trends in nanomedicine

Femtika was established in 2013 as a spin off from Vilnius University Laser Research Center. Can you please introduce how the company initially came about and the scope of its offering in the 3D laser precision micro processing segment?

Femtika originated from the wish to put the micro-fabrication knowledge, gathered in Vilnius University Laser Research Center for wider usage in medical area. The idea that initiated the spin-off of Femtika was  the creation of scaffolds for bio-pacemaker. Currently, the company offers technologies and tools for milli- to nano-level micro-fabrication.

We understand that the original rationale behind establishing Femtika was to create laser micro-fabricated scaffolds for bio-pacemakers that would hold stem cells in place within the heart. Please tell us more about this particular project.

The idea was to create scaffolds with windows smaller than five microns for the stem cells not to escape, but larger than two microns in order for them to communicate freely. Our technology allows us to fabricate such scaffolds in a completely controllable fashion, meaning that precision of such window can be reproduced with 200 nm tolerance. Scaffolds with live stem cells were tested in live organisms, and the results were very promising.

We hear that you are collaborating with a French entity that is attempting to produce micro-robots capable of entering the human bloodstream, taking diagnostics measurements and exiting again. Can you tell us how the project is progressing?

Yes, we do have a very interesting collaboration with a French start-up developing a micro-robot that can manoeuvre in the human bloodstream. Femtika is responsible for the fabrication of mechatronics for this device. As this project is very advanced, we cannot disclose more information, but at the moment the micro-robot is already moving in liquid environment and passing endurance tests.

How else can microstructures created by Femtika best be applied to medicine?

We are currently developing a slow (1 ml/hour) liquid flow sensor that will be built inside a medical needle or catheter. Such a device can be useful in cases when an exact amount of liquid is needed when it enters the human body. Additive and subtractive technologies are used jointly in fabrication of this device, which opens up a completely new way of producing such a device.

Can you tell us more about the significance of this technology?

The combination of additive and subtractive manufacturing is a big step forward for the whole micro-fabrication process. The manufacturing process in the micro-world is traditionally restricted by the ability to manipulate small pieces of produced devices. Combining additive and subtractive manufacturing allows the fabrication of different components in the required place in the device without having to manipulate different parts.

What do you perceive to be the main emerging trends in nanomedicine?

I would say that brain-related disease treatment is an upcoming trend in nanomedicine. The human brain is a very sophisticated creation, where nanomedicine can provide us a lot of new information and help treat diseases.

You joined Femtika in November 2014, presumably with the mission of converting Femtika into a successful business with international reach. What have been the main challenges encountered and achievements attained to date since becoming CEO?

The main challenge was to find viable fields to commercialise Femtika’s technology. As 3D micro-fabrication is very new to society, big efforts were needed to find the most promising areas for this technology while educating the market leaders on what could be achieved with it. Femtika successfully entered the world-wide market with is research services and later with our Laser Nanofactory machine. As there is not much of a market in Lithuania, we were poised to grow internationally, and now 95% of our company’s revenue comes from exports.

WBCSD

Related Content

Cannabis: A Drug of Immense Medical Value

Mark Ware, Chief Medical Officer at Canopy Growth Corporation, shares his vision for the future of the medical cannabis sector and says there is massive patient demand; however, research and clinical trials have yet to catch up to position cannabis as a respected medical product.

A Changing Risk Appetite

Report: A Changing Risk Appetite Media: Financial Services Sector: Financial Services Interview with Joseph Cuschieri, CEO, Malta Financial Services Authority (MFSA) A Changing Risk Appetite In April 2018, you took over the CEO position with the aim of implementing [...]

Future Sports & Outdoor

The global market for sports and outdoor products is fast evolving, with customers increasingly demanding responsibly produced, tech-infused, multifunctional and multi-purpose products. This feature is designed to help brands tell their stories and support consumers in understanding the current trends and to expose them to the latest innovations that are setting new standards in terms of product performance and purpose.

Load More Posts

Report Sponsors

ABSA logo
PWC logo
Aon logo
Hilton Malta logo
Emirates logo
Changi Airport Singapore Logo
FxPro logo
Lufthansa logo
British Airways logo
Marsh logo
Betsson Group logo
Deloitte logo
Oracle logo
Microsoft logo
CNN logo
BDO logo
DHL logo
Swissquote logo
The Economist logo
EY logo
South Africa logo
Government of Malta logo
HSBC logo
KPMG logo
Vodafone logo
PayPal logo
Wurth logo
Trustly logo
2020-02-06T12:03:11+00:00

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close